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Abstract

On the basis of expansions of the characteristic and acyclic polynomials of conjugated
hydrocarbons, five recurrence relationships enabling the computation of the number of
Kekulé structures are presented.

1. Introduction

Molecular topology determines a large number of physico-chemical properties
of chemical compounds [1-10]. Among them, the determination of the number of
Kekulé structures of benzenoid hydrocarbons has attracted the attention of theoretical
chemists over a relatively long period of time. Explicit combinatorial expressions
enabling the calculation of the Kekulé structure count have been derived for a large
number of classes of benzenoid hydrocarbons [9-14].

A Kekulé structure of an unsaturated conjugated hydrocarbon is a structural
formula including hydrogens in which every carbon atom is tetravalent, sp>-hybridized,
and incident to exactly one double bond.

Some of the most important theorems concerning the computation of the
number of Kekulé structures of benzenoids are summarized. Based on expansions
of the characteristic and acyclic polynomials of the molecular graphs of conjugated
hydrocarbons, in terms of the corresponding polynomials of certain subgraphs of
the molecular graph, five recurrence relations enabling the computation of the
number of Kekulé structures will be presented.

2. Notation and definitions

We shall use the standard graph notation and terminology [15]; G will denote
a graph with N vertices: vy, vy, . . ., Uy; the degree of the vertex v; will be denoted
by d;. The edge connecting vertices v; and v; is denoted by e;. The subgraph
G — v; is obtained from the graph G by deletion of the vertex v; and its incident
edges. The subgraph G - ¢;; is obtained from the graph G by deletion of the edge
e;;. The subgraph G — C; is obtained from the graph G by deleting all the vertices
of the cycle C; and their incident edges.
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The adjacency matrix of a graph G with N vertices, A = A(G), is the square
N x N symmetric matrix which contains information about the connectivity of the
vertices in G. Its entries are defined as

M

1, for vertices i,j adjacent,
a; =
v 0, otherwise.

The characteristic polynomial of the graph G may be expressed as
follows [15]:

N
Ch(G,x) =det(xI - A) = Y a,xV", ()
n=0
where I is the unit matrix.
The acyclic (matching) polynomial was defined as [16]

N
Ac(G,x) = Y (-D*P(G,k)xN 2k, 3
k=0

where P(G, k) is the number of ways of choosing k disjoint edges from G.
It is known that the number K(G) of Kekulé structures is related in a simple
manner to the adjacency matrix A of the aromatic hydrocarbon, namely [17]

det A(G) = (-DN2K(G)>. 4)
K(G) obeys the following known recurrence relationship [18]:
K(G)=K(G~-¢;) + K(G-v;—v)). (S)
If the vertex v; is of degree one, we obtain

K(G)=K(G-v;-v;). (6)

If the conjugated system G is an essentially disconnected benzenoid composed
of two non-interacting fragments G; and G,, then

K(G) = K(G)K(Gy). (7
If G is a benzenoid graph with N vertices, then [19]

Ch(G,0) = (-)N'2K(G)~. @®)
If G is a graph with N vertices, then [20]

Ac(G,0) = (-DN2K(G). 9)
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The free terms, i.e. the coefficients of x°, of the characteristic and acyclic
polynomials, are denoted by Ch(G, 0) and Ac(G, 0), respectively.

LEMMA 1 [14]

If B is a benzenoid graph and C; is its cycle with nc vertices, then in the
interior of C; there is an odd number of vertices, whenever nc =0 (mod 4).

3. Graph polynomials recurrence relationships

The characteristic polynomial of a graph G, Ch(G), can be expressed as a
linear function of the characteristic polynomials of its subgraphs obtained after the
removal of an edge e;;, the vertices v; and v;, and all r cycles C, containing the
edge ¢; [17]:

Ch(G) = Ch(G - ¢;) — Ch(G - v; - vj)—ZiCh(G - C). 10)
k=1

The decomposition of the graph G at its edge ¢;; gives the following equality
in terms of acyclic polynomials of the graph G, Ac(G), and its subgraphs [21]:

Ac(G) = Ac(G - ¢5) — Ac(G — v; — vj). an

The expansion of the characteristic polynomial is given in the following
equation in terms of the characteristic polynomials of its subgraphs, corresponding
to the decomposition of the graph G at its vertex v; [22]:

d; r
Ch(G) = xCh(G - v;) - 3, Ch(G — v;— v;) =2 Y, Ch(G - C}), (12)
j=1 k=1

where the second summation goes over all r cycles which contain vertex v;.
In a similar way, we obtain the expression of the acyclic polynomial of the
graph G decomposed at its vertex v; [22]:

g;
Ac(G) = xAc(G - v;) - ), Ac(G — v; — V). (13)
j=1

Let G be a graph with g, and g, as two distinct vertices, and let H be another
graph with A, and A, as two distinct vertices. We construct the composed graph
G: H by identifying g, with h; and g, with hj,.

The characteristic polynomial of the composed graph G:H is expressed by
the following equality [23]:
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Ch(G:H) = Ch(G)Ch(H — hy — hy) + Ch(G — g)Ch(H — hy)
+ Ch(G — g,)Ch(H — ) + Ch(G — g, — g2)Ch(H)
— x[Ch(G — g))Ch(H — hy — hy) + Ch(G — g2)Ch(H — hy — hy) (14)
+ Ch(G - g1 — 82)Ch(H — &) + Ch(G - g1 — 82)Ch(H - Ip)]

+ x?Ch(G — g — g2)Ch(H — by — ) = 2, Y Ch(G — P,)Ch(H — P,),
g h

where the summations are over all paths P, and P, from G and H, respectively,
connecting vertices g; and g, with h; and h,, respectively.

In a similar way, we express the acyclic polynomial of graph G:H,
namely [23]

Ac(G:H) = Ac(GYAc(H — h — ) + Ac(G — g))Ac(H — hp)
+ Ac(G — g2)Ac(H — b)) + Ac(G — g1 — &2)Ac(H)
— x[Ac(G — gDAC(H — hj— ) + Ac(G — g2)Ac(H — hy— 1)
+ AC(G = g1 — 22)AC(H = Iy) + Ac(G - g1 — g2)Ac(H — p)]

+ x2Ac(G — g1 — g2)AC(H — Iy — hy). (15)

4, Kekulé structures recurrence relationships

Based on the recurrence relationships (10)—(15) in terms of the characteristic
and acyclic polynomials of conjugated hydrocarbons, we will derive five recurrence
relationships enabling the computation of the number of Kekulé structures.

THEOREM 1

Let G be a benzenoid graph. Then K(G) can be expressed as a function of
the number of Kekulé structures of the subgraphs of G which do not contain the
CdgC €.

K(GY =K(G-¢;)*+K(G - v;—-v))?+ 25:1((0 - C)?, (16)
k=1

where the summation goes over all r cycles in G which contain the edge e;;.
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+ 2K C.‘:.:s:jfﬁii%"";
Scheme 1.

The proof is straightforward by applying equality (8) to the recurrence
relationship (10). An illustrative example (phenanthrene) is shown in scheme 1. On
this and the following examples, the place of application of the theorems is indicated
by an arrow pointing to the corresponding edge or vertex.

The graphical equation shown in scheme 1 gives the following equality
expressed by the corresponding number of Kekulé structures:

52=324+2242.2242.124+2.12,

Using equality (9) in the corresponding decomposition in terms of acyclic
polynomials (eq. (10)), we obtain the well-known equation (5).

THEOREM 2

The number of Kekulé structures of a benzenoid graph G is related to the
number of Kelulé structures of the subgraphs of G obtained after the removal of
the vertex v; with each of its d; neighbours and of each of the r cycles Cy containing
vertex v;:

d,' r
K(GY =Y K(G - v;— v, +2Y K(G — C¢)*. (17)
j=1 k=1

This can be easily shown using eqs. (8) and (12). In scheme 2, we give another
example, anthracene.
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O o JranfC
2 Dek(Cl var(g)

From the graphical example of theorem 2, we obtain the following equality
for the number of Kekulé structures of the corresponding graphs:

42=22+12+ 12+ 212+ 212+ 212+ 2.1+ 212

THEOREM 3

The number of Kekulé structures of a graph G can be expressed in terms of
the number of Kekulé structures of the subgraphs of G, corresponding to the deletion
of the vertex v; and each of its 4; neighbours in tumn:

d;
K(G) =Y K(G - v;— v)). (18)
j=1
The proof comes from eqgs. (9) and (13). The theorem is illustrated for the
same benzenoid hydrocarbon as above, phenanthrene.

R

Scheme 3.

The graphical example for theorem 3 gives the following expression for the
number of Kekulé structures of the corresponding graphs:
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5=2-1+2+1.

For theorems 2 and 3 one must note that if G has an even number of vertices,
then G — v; has an odd number of vertices and K(G — v;) = 0. Obviously, the term
corresponding to the subgraph G — v; was omitted.

THEOREM 4

The number of Kekulé structures of the composed benzenoid graphs G: H is
equal to

K(G:H)* = K(G’K(H — hy— ly)* + K(G - g))*K(H — hy)?
+ K(G = 2)*K(H — y)* + K(G - g1 — 8)* K(H)?

+2Y Y K(G — B)*K(H - P,)*, (19)
g h
where the summations are over all paths P, connecting vertices g; and g5, and paths
P, connecting vertices hy and A, from G and H, respectively.
We prove this equality using egs. (8) and (14) and lemma 1. An application
of the theorem is illustrated in scheme 4 for the graphs G, and H,, and G;:H, is
tetracene.

9 1
Gy Hy

Scheme 4.



176  O. Ivanciuc, A.T. Balaban, Recurrences for the number of Kekulé structures

The graphical relation illustrated in scheme 4 can be translated in terms of
the number of Kekulé structures of the graph G: H and its subgraphs from eq. (19):

52=32.124 0.0+ 0.0 +12-22+ 2. [12 12+ 2.2+ 122+ 1212+ 12 12+ 1212,
THEOREM 5
The number of Kekulé structures of the composed graph G:H is equal to
K(G:H)=K(G)K(H—h—~h)+K(G - g)KH — hy)
+ K(G — 2)K(H = h) + K(G — g — 8)K(H). (20)

The proof comes from eqs. (9) and (15). The theorem is illustrated by the
same graphs G, H; and G,:H, as in the preceding case.

{esesecUiine
H(CL (OO (D
w(CC (D)

Scheme 5.

From the graphical expression of theorem 5, we obtain the following equality
for the number of Kekulé structures of the graphs depicted in scheme S5:

5=31+00+0.0+1-2.

Obviously, if G and H contain even numbers of vertices, eq. (19) reduces to
K(G:H)* = K(G'K(H = = 1p)* + K(G - 81— &2)* K(H)?

+2Y > K(G - P’ K(H - By)?, (21)
g h

while eq. (20) becomes

K(G:H) = K(G)K(H - hy— ) + K(G — g1 — g2)K(H). (22)
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If G and H contain odd numbers of verties, eq. (19) reduces to
K(G:H)* = K(G - g1)*K(H = ip)* + K(G — g,)* K(H = hy)?

+2> Y K(G - P’ K(H - F,)? (23)
g h
and eq. (20) gives

K(G:H)=K(G - g1)K(H — hy) + K(G — g;)K(H — hy). (24)
If G has an even and H has an odd number of vertices, we have

K(G:H)=0. (25)
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