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Abstract 

On the basis of expansions of the characteristic and acyclic polynomials of conjugated 
hydrocarbons, five recurrence relationships enabling the computation of the number of 
Kekul6 structures are presented. 

1. Introduction 

Molecular topology determines a large number of physico-chemical properties 
of chemical compounds [1-  10]. Among them, the determination of the number of 
Kekul6 structures of benzenoid hydrocarbons has attracted the attention of theoretical 
chemists over a relatively long period of time. Explicit combinatorial expressions 
enabling the calculation of the Kekul6 structure count have been derived for a large 
number of classes of benzenoid hydrocarbons [9-14]. 

A Kekul6 structure of an unsaturated conjugated hydrocarbon is a structural 
formula including hydrogens in which every carbon atom is tetravalent, spZ-hybridized, 
and incident to exactly one double bond. 

Some of the most important theorems concerning the computation of the 
number of Kekul6 structures of benzenoids are summarized. Based on expansions 
of the characteristic and acyclic polynomials of the molecular graphs of conjugated 
hydrocarbons, in terms of the corresponding polynomials of certain subgraphs of 
the molecular graph, five recurrence relations enabling the computation of the 
number of Kekul6 structures will be presented. 

2. Notation and definitions 

We shall use the standard graph notation and terminology [15]; G will denote 
a graph with N vertices: vl, ½ . . . . .  vN; the degree of the vertex vi will be denoted 
by di. The edge connecting vertices vi and v i is denoted by % .  The subgraph 
G - vi is obtained from the graph G by deletion of the vertex vi and its incident 
edges. The subgraph G - eij is obtained from the graph G by deletion of the edge 
eij. The subgraph G -  Ci is obtained from the graph G by deleting all the vertices 
of the cycle Ci and their incident edges. 

© J.C. Baltzer AG, Scientific Publishing Company 



170 O. Ivanciuc, A.T. Balaban, Recurrences for the number of Kekuld structures 

The adjacency matrix of a graph G with N vertices, A = A(G), is the square 
N × N symmetric matrix which contains information about the connectivity of the 
vertices in G. Its entries are defined as 

1, for vertices i , j  adjacent, 
aij = 

0, otherwise. 
(1) 

The characteristic polynomial of the graph G may be expressed as 
follows [15]: 

N 

Ch(G,x) = d e t ( x I -  A ) =  ~.~anx N-n, (2) 
n=0 

where I is the unit matrix. 
The acyclic (matching) polynomial was defined as [16] 

N 

Ac(G, x) = ~ (-1) k P(G, k)x N-2k, (3) 
k=0 

where P(G, k) is the number of ways of choosing k disjoint edges from G. 
It is known that the number K(G) of Kekul6 structures is related in a simple 

manner to the adjacency matrix A of the aromatic hydrocarbon, namely [17] 

det A(G) = (-1)N/2 K(G) z. (4) 

K(G) obeys the following known recurrence relationship [18]: 

K(G) = K ( G - e o )  + K ( G -  u i -  vj).  (5) 

If the vertex vi is of degree one, we obtain 

K(G) = K(G - v i -  vj).  (6) 

If the conjugated system G is an essentially disconnected benzenoid composed 
of two non-interacting fragments G~ and G2, then 

K(G) = K(G1)K(G2). (7) 

If G is a benzenoid graph with N vertices, then [19] 

Ch(G, 0) = ( -  1) N/2 K(G) 2. (8) 

If G is a graph with N vertices, then [20] 

Ac(G,0) - (-1) N/EK(G). (9) 
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The free terms, i.e. the coefficients of x °, of the characteristic and acyclic 
polynomials, are denoted by Ch(G, 0) and Ac(G, 0), respectively. 

LEMMA t [14] 

If B is a benzenoid graph and Ci is its cycle with nc vertices, then in the 
interior of Ci there is an odd number of vertices, whenever nc - 0 (mod 4). 

3. Graph polynomials recurrence relationships 

The characteristic polynomial of a graph G, Ch(G), can be expressed as a 
linear function of the characteristic polynomials of its subgraphs obtained after the 
removal of an edge eij, the vertices vi and vy, and all r cycles Ck containing the 
edge eij [17]: 

Ch(G) = Ch(G - eij) - Ch(G-  v i -  vj) - 2Y_ Ch(G - C,). (10) 
k=l 

The decomposition of the graph G at its edge eii gives the following equality 
in terms of acyclic polynomials of the graph G, Ac(G), and its subgraphs [21]: 

Ac(G) = Ac(G - eij) - Ac(G - u l -  v j ) .  (11) 

The expansion of the characteristic polynomial is given in the following 
equation in terms of the characteristic polynomials of its subgraphs, corresponding 
to the decomposition of the graph G at its vertex vi [22]: 

d/ r 

Ch(G) = x C h ( G -  v i ) - y C h ( G -  v i -  v j ) -  2 ~ C h ( G  - C k ) ,  
j=l  k=l 

(12) 

where the second summation goes over all r cycles which contain vertex vi. 
In a similar way, we obtain the expression of the acyclic polynomial of the 

graph G decomposed at its vertex vi [22]: 

Ac(G) = xAc(G - vi) - ~ A c ( G  - v i -  19j). 
j=l  

(13) 

Let G be a graph with gl and g2 as two distinct vertices, and let H be another 
graph with hi and h 2 as two distinct vertices. We construct the composed graph 
G : H  by identifying gl with hi and g2 with h 2. 

The characteristic polynomial of the composed graph G : H  is expressed by 
the following equality [23]: 
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C h ( G : H )  = C h ( G ) C h ( H  - hi - h2) + C h ( G  - g l ) C h ( H  - h2) 

+ C h ( G  - g 2 ) C h ( H  - h 1) + C h ( G  - gl - g 2 ) C h ( H )  

- x [ C h ( G  - g l ) C h ( H  - hi - h2) + C h ( G  - g 2 ) C h ( H  - hi - h2) (14)  

+ C h ( G  - gl - g 2 ) C h ( H  - hi) + C h ( G  - g l -  g 2 ) C h ( H  - h2)] 

+ x2Ch(G - g l -  g2 )Ch(H - I , i -  Iz2) - 2 E E C h ( G  - Pg)Ch(H  - ph), 
g h 

w, here  the s u m m a t i o n s  are o v e r  all pa ths  Ps and Ph f rom G and H, r e spec t i ve ly ,  

c o n n e c t i n g  ve r t i ces  gl and g2 wi th  hi and h2, r e spec t ive ly .  
In a s imi l a r  way ,  we  express  the acyc l i c  p o l y n o m i a l  o f  g r a p h  G : H ,  

n a m e l y  [23] 

A c ( G : H )  = A c ( G ) A c ( H  - hi - h2) + A c ( G  - g l ) A c ( H  - h2) 

+ A c ( G  - g 2 ) A c ( H  - hi) + A c ( G  - gl - g z ) A c ( H )  

- x [ A c ( G  - g l ) A c ( H  - h i -  h2) + A c ( G  - g 2 ) A c ( H  - h i -  f22) 

+ A c ( G  - gl - g2 )Ac(  H - hi)  + A c ( G  - gl - g 2 ) A c ( H  - h2)] 

+ x 2 A c (  G - gl - g 2 ) A c ( H  - hi - h2). (15)  

4. Kekul6 structures recurrence relationships 

Based  on  the r e c u r r e n c e  re la t ionsh ips  ( 1 0 ) - ( 1 5 )  in t e rms  o f  the cha rac t e r i s t i c  

and a c y c l i c  p o l y n o m i a l s  o f  c o n j u g a t e d  h y d r o c a r b o n s ,  we  wil l  de r ive  f ive  r e c u r r e n c e  

re la t ionsh ips  e n a b l i n g  the c o m p u t a t i o n  o f  the n u m b e r  o f  K e k u l 6  s t ruc tures .  

THEOREM 1 

Le t  G be a b e n z e n o i d  graph.  T h e n  K ( G )  can  be exp re s sed  as a f u n c t i o n  o f  

the n u m b e r  o f  Keku l6  s t ruc tures  o f  the s u b g r a p h s  o f  G w h i c h  do  no t  con t a in  the 

e d g e  eij: 

r 

K ( G )  2 = K ( G  - eij)2 + K ( G  - l) i - l)j)2 + 2 ~ K ( G  - Ck)  z,  (16) 

k=l 

w h e r e  the s u m m a t i o n  goes  o v e r  all r cyc l e s  in G w h i c h  c on t a in  the  e d g e  eij. 
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2 

1 I¢) 
Scheme 1. 

The proof is straightforward by applying equality (8) to the recurrence 
relationship (10). An illustrative example (phenanthrene) is shown in scheme 1. On 
this and the following examples, the place of application of the theorems is indicated 
by an arrow pointing to the corresponding edge or vertex. 

The graphical equation shown in scheme 1 gives the lollowing equality 
expressed by the corresponding number of Kekul6 structures: 

5 2 = 3 2 + 2 2 + 2.2 2 + 2.12 + 2.12 . 

Using equality (9) in the corresponding decomposition in terms of acyclic 
polynomials (eq. (10)), we obtain the well-known equation (5). 

THEOREM 2 

The number of Kekul6 structures of a benzenoid graph G is related to the 
number of Kelul6 structures of the subgraphs of G obtained after the removal of 
the vertex vi with each of its di neighbours and of each of the r cycles Ck containing 
v e r t e x  D i :  

d i r 

K(G) 2 = ~ K(G - v i -  l)j) 2 + 2 ~  K(G - C k )  2. 

j=l k=l 

(17) 

This can be easily shown using eqs. (8) and (12). In scheme 2, we give another 
example, anthracene. 
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+2/( ....... ::""i . . . . . .  } ....... f "  +2K +2K 

Scheme 2. 

From the graphical example of theorem 2, we obtain the following equality 
for the number of Kekul6 structures of the corresponding graphs: 

4 2 = 2 2 + 12+  12 + 2.12 + 2.12 + 2.12 + 2.12 + 2.12 . 

THEOREM 3 

The number of Kekul6 structures of a graph G can be expressed in terms of 
the number of Kekul6 structures of the subgraphs of G, corresponding to the deletion 
of the vertex vi and each of its d i neighbours in turn: 

ai 

K(G) = y K ( G -  u i -  vj). (18) 
j=l 

The proof comes from eqs. (9) and (13). The theorem is illustrated for the 
same benzenoid hydrocarbon as above, phenanthrene. 

Scheme 3. 

The graphical example for theorem 3 gives the following expression for the 
number of Kekul6 structures of the corresponding graphs: 
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5 = 2 . 1 + 2 + 1 .  

For theorems 2 and 3 one must note that if G has an even number of  vertices, 
then G - t~i has an odd number of  vertices and K(G - vi) = 0. Obviously, the term 
corresponding to the subgraph G -  vi was omitted. 

THEOREM 4 

The number of  Kekul6 structures of  the composed benzenoid graphs G : H is 
equal to 

K ( G : H )  2 = K(G)2 K ( H  - hi - h2) 2 + K(G  - gl)2 K ( H  - he) 2 

+ K ( G  - g 2 ) 2 K ( H  - hi) 2 + K ( G  - gl - g 2 ) 2 K ( H )  2 

+ 2 ~  ~ K ( G  - Pg )2K(H - Ph) 2, (19) 
g h 

where the summations are over all paths Pg connectingvertices gl and g2, and paths 
Ph connecting vertices hi and h2, from G and H, respectively. 

We prove this equality using eqs. (8) and (14) and lemma 1. An application 
of  the theorem is illustrated in scheme 4 for the graphs G1 and H1, and GI:H1 is 
tetracene. 

h2 

• 1 I . . . . . . .  

Scheme 4. 
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The graphical relation illustrated in scheme 4 can be translated in terms of 
the number of Kekul6 structures of the graph G" H and its subgraphs from eq. (19): 

5 2 = 3 2 .1 z + 0 . 0  + 0 . 0  + 12 .2 2 + 2 .[12 .12 + 12 -12 + 12 .12 + 12 .12 + 12 .12 + 12 .12]. 

THEOREM 5 

The number of Kekul6 structures of the composed graph G : H  is equal to 

K ( G : H )  = K ( G ) K ( H  - h 1 - h2) + K ( G  - g l ) K ( H  - h2) 

+ K ( G  - g 2 ) K ( H  - h i )  + K ( G  - gl - g 2 ) K ( H ) .  (20) 

The proof comes from eqs. (9) and (15). The theorem is illustrated by the 
same graphs G1, H1 and G1:H~ as in the preceding case. 

Scheme 5. 

From the graphical expression of theorem 5, we obtain the following equality 
for the number of Kekul6 structures of the graphs depicted in scheme 5: 

5 = 3 - 1 + 0 . 0 + 0 . 0 + 1 . 2 .  

Obviously, if G and H contain even numbers of vertices, eq. (19) reduces to 

K ( G : H )  2 = K ( G ) 2  K ( H  - hi - h2) z + K ( G  - gl - g2)2 K ( H )  z 

+ 2~.. ~ K ( G  - Pg)2K(H - Ph) 2, (21) 
g h 

while eq. (20) becomes 

K ( G : H )  = K ( G ) K ( H  - h ~ -  h2) + K ( G  - gl - g 2 ) K ( H ) .  (22) 
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If G and H contain odd numbers of  verties, eq. (19) reduces to 

K ( G : H )  2 = K ( G  - gl)Z K ( H  - h2) 2 + K ( G  - gz)Z K ( H  - hi) 2 

+ 2 ~  ~ K ( G  - P g ) Z K ( H  - Ph) 2 (23) 
g h 

and eq. (20) gives 

K ( G : H )  = K ( G  - g l ) K ( H  - h2) + K ( G  - g z ) K ( H  - h i ) .  (24)  

If G has an even and H has an odd number of  vertices, we have 

K ( G : H )  = 0. (25) 
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